Mutagenesis and TILLING to Dissect Gene Function in Plants
نویسنده
چکیده
Mutagenesis can be random or targeted and occur by nature or artificially by humans. However, the bulk of mutagenesis employed in plants are random and caused by physical agents such as x-ray and gamma-ray or chemicals such as ethyl-methane sulfonate (EMS). Researchers are interested in first identifying these mutations and/or polymorphisms in the genome followed by investigating their effects in the plant function as well as their application in crop improvement. The high-throughput technique called TILLING (Targeting Induced Local Lesion IN Genomes) has been already established and become popular for identifying candidate mutant individuals harboring mutations in the gene of interest. TILLING is a non-transgenic and reverse genetics method of identifying a single nucleotide changes. The procedure of TILLING comprises traditional mutagenesis using optimum type and concentration of mutagen, development of a non-chimeric population, DNA extraction and pooling, mutation detection as well as validation of results. In general, TILLING has proved to be robust in identifying useful mutant lines in diverse economically important crops of the world. The main goal of the current mini-review is to show the significance role played by mutagenesis and TILLING in the discovery of DNA lesions which are to be used in the improvement of crops for the trait of interest.
منابع مشابه
TILLING and ecotilling for rice.
Mutagenesis is frequently used to test gene function and to aid in crop improvement. Targeting Induced Local Lesions in Genomes (TILLING) is a reverse genetic strategy first developed to identify induced point mutations in Arabidopsis. This general strategy has since been applied to many plant and animal species. Here, we describe a protocol for high-throughput TILLING in rice. Gene segments ar...
متن کاملApplication of TILLING and EcoTILLING as Reverse Genetic Approaches to Elucidate the Function of Genes in Plants and Animals
With the fairly recent advent of inexpensive, rapid sequencing technologies that continue to improve sequencing efficiency and accuracy, many species of animals, plants, and microbes have annotated genomic information publicly available. The focus on genomics has thus been shifting from the collection of whole sequenced genomes to the study of functional genomics. Reverse genetic approaches hav...
متن کاملDeletion-based reverse genetics in Medicago truncatula.
The primary goal of reverse genetics, the identification of null mutations in targeted genes, is achieved through screening large populations of randomly mutagenized plants. T-DNA and transposon-based mutagenesis has been widely employed but is limited to species in which transformation and tissue culture are efficient. In other species, TILLING (for Targeting Induced Local Lesions IN Genomes),...
متن کاملBreakthrough Technologies Deletion-Based Reverse Genetics in Medicago truncatula
The primary goal of reverse genetics, the identification of null mutations in targeted genes, is achieved through screening large populations of randomly mutagenized plants. T-DNA and transposon-based mutagenesis has been widely employed but is limited to species inwhich transformation and tissue culture are efficient. In other species, TILLING (for Targeting Induced Local Lesions IN Genomes), ...
متن کاملScientific Correspondence High-Throughput Screening for Induced Point Mutations
With the completion of genome sequencing projects, emphasis in genomics has shifted from analyzing sequences to understanding gene function, and effective reverse genetic strategies are increasingly in demand. Here we report adaptations of the targeting induced local lesions in genomes (TILLING) reverse genetic strategy (McCallum et al., 2000a) to make it suitable for large-scale screening of c...
متن کامل